125 research outputs found

    Evolution of the Electricity Distribution Networks : Active Management Architecture Schemes and Microgrid Control Functionalities

    Get PDF
    The power system transition to smart grids brings challenges to electricity distribution network development since it involves several stakeholders and actors whose needs must be met to be successful for the electricity network upgrade. The technological challenges arise mainly from the various distributed energy resources (DERs) integration and use and network optimization and security. End-customers play a central role in future network operations. Understanding the network’s evolution through possible network operational scenarios could create a dedicated and reliable roadmap for the various stakeholders’ use. This paper presents a method to develop the evolving operational scenarios and related management schemes, including microgrid control functionalities, and analyzes the evolution of electricity distribution networks considering medium and low voltage grids. The analysis consists of the dynamic descriptions of network operations and the static illustrations of the relationships among classified actors. The method and analysis use an object-oriented and standardized software modeling language, the unified modeling language (UML). Operational descriptions for the four evolution phases of electricity distribution networks are defined and analyzed by Enterprise Architect, a UML tool. This analysis is followed by the active management architecture schemes with the microgrid control functionalities. The graphical models and analysis generated can be used for scenario building in roadmap development, real-time simulations, and management system development. The developed method, presented with high-level use cases (HL-UCs), can be further used to develop and analyze several parallel running control algorithms for DERs providing ancillary services (ASs) in the evolving electricity distribution networks.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Classifying resilience approaches for protecting smart grids against cyber threats

    Get PDF
    Smart grids (SG) draw the attention of cyber attackers due to their vulnerabilities, which are caused by the usage of heterogeneous communication technologies and their distributed nature. While preventing or detecting cyber attacks is a well-studied field of research, making SG more resilient against such threats is a challenging task. This paper provides a classification of the proposed cyber resilience methods against cyber attacks for SG. This classification includes a set of studies that propose cyber-resilient approaches to protect SG and related cyber-physical systems against unforeseen anomalies or deliberate attacks. Each study is briefly analyzed and is associated with the proper cyber resilience technique which is given by the National Institute of Standards and Technology in the Special Publication 800-160. These techniques are also linked to the different states of the typical resilience curve. Consequently, this paper highlights the most critical challenges for achieving cyber resilience, reveals significant cyber resilience aspects that have not been sufficiently considered yet and, finally, proposes scientific areas that should be further researched in order to enhance the cyber resilience of SG.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA

    Flexibility Services Provision by Frequency-Dependent Control of On-Load Tap-Changer and Distributed Energy Resources

    Get PDF
    Distribution network connected distributed energy resources (DER) are able to provide various flexibility services for distribution system operators (DSOs) and transmission system operators (TSOs). These local and system-wide flexibility services offered by DER can support the frequency ( f ) and voltage ( U ) management of a future power system with large amounts of weather-dependent renewable generation and electric vehicles. Depending on the magnitude of frequency deviation, other active network management-based frequency control services for TSOs could also be provided by DSOs in coordination with adaptive control of DER. This paper proposes utilisation of demand response based on frequency-dependent HV/MV transformer on-load tap-changer (OLTC) operation in case of larger frequency deviations. The main principle underlying the proposed scheme lies in the voltage dependency of the distribution network connected loads. In this paper, it is also proposed to, simultaneously with frequency-dependent OLTC control, utilise reverse reactive power -voltage ( QU ) - and adaptive active power -voltage ( PU ) -droops with distribution network connected DER units during these larger frequency deviations, in order to enable better frequency support service for TSOs from DSO networks. The effectivity and potential of the proposed schemes are shown through PSCAD simulations. In addition, this paper also presents a holistic and collaborative view of potential future frequency control services which are provided by DSO network-connected resources for TSOs at different frequency deviation levels.This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Towards Flexible Distribution Systems : Future Adaptive Management Schemes

    Get PDF
    During the ongoing evolution of energy systems toward increasingly flexible, resilient, and digitalized distribution systems, many issues need to be developed. In general, a holistic multi-level systemic view is required on the future enabling technologies, control and management methods, operation and planning principles, regulation as well as market and business models. Increasing integration of intermittent renewable generation and electric vehicles, as well as industry electrification during the evolution, requires a huge amount of flexibility services at multiple time scales and from different voltage levels, resources, and sectors. Active use of distribution network-connected flexible energy resources for flexibility services provision through new marketplaces will also be needed. Therefore, increased collaboration between system operators in operation and planning of the future power system will also become essential during the evolution. In addition, use of integrated cyber-secure, resilient, cost-efficient, and advanced communication technologies and solutions will be of key importance. This paper describes a potential three-stage evolution path toward fully flexible, resilient, and digitalized electricity distribution networks. A special focus of this paper is the evolution and development of adaptive control and management methods as well as compatible collaborative market schemes that can enable the improved provision of flexibility services by distribution network-connected flexible energy resources for local (distribution system operator) and system-wide (transmission system operator) needs.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Comparison of multiple power amplification types for power hardware-in-the-loop applications

    Get PDF
    This Paper discusses Power Hardware-in-the-Loop simulations from an important point of view: an intrinsic and integral part of PHIL simulation – the power amplification. In various publications PHIL is discussed either in a very theoretical approach or it is briefly featured as the used method. In neither of these publication types the impact of the power amplification to the total PHIL simulation is discussed deeply. This paper extends this discussion into the comparison of three different power amplification units and their usability for PHIL simulations. Finally in the conclusion it is discussed which type of power amplification is best for which type of PHIL experiment

    Compliance of Distribution System Reactive Flows with Transmission System Requirements

    Get PDF
    Transmission system operators (TSOs) often set requirements to distribution system operators (DSOs) regarding the exchange of reactive power on the interface between the two parts of the system they operate, typically High Voltage and Medium Voltage. The presence of increasing amounts of Distributed Energy Resources (DERs) at the distribution networks complicates the problem, but provides control opportunities in order to keep the exchange within the prescribed limits. Typical DER control methods, such as constant cosϕ or Q/V functions, cannot adequately address these limits, while power electronics interfaced DERs provide to DSOs reactive power control capabilities for complying more effectively with TSO requirements. This paper proposes an optimisation method to provide power set-points to DERs in order to control the hourly reactive power exchanges with the transmission network. The method is tested via simulations using real data from the distribution substation at the Sundom Smart Grid, in Finland, using the operating guidelines imposed by the Finnish TSO. Results show the advantages of the proposed method compared to traditional methods for reactive power compensation from DERs. The application of more advanced Model Predictive Control techniques is further explored.©2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Part of this work was carried out in the SolarX research project with financial support provided by Business Finland, 2019–2021 (grant No. 6844/31/2018).fi=vertaisarvioitu|en=peerReviewed

    Solutions to Increase PV Hosting Capacity and Provision of Services from Flexible Energy Resources

    Get PDF
    Future smart grids will be more dynamic with many variabilities related to generation, inertia, and topology changes. Therefore, more flexibility in form of several active and reactive power related technical services from different distributed energy resources (DER) will be needed for local (distribution network) and whole system (transmission network) needs. However, traditional distribution network operation and control principles are limiting the Photovoltaic (PV) hosting capacity of LV networks and the DER capability to provide system-wide technical services in certain situations. New active and adaptive control principles are needed in order to overcome these limitations. This paper studies and proposes solutions for adaptive settings and management schemes to increase PV hosting capacity and improve provision of frequency support related services by flexible energy resources. The studies show that unwanted interactions between different DER units and their control functions can be avoided with the proposed adaptive control methods. Simultaneously, also better distribution network PV hosting capacity and flexibility services provision from DER units even during very low load situations can be achieved.© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore